Newtonian Mechanics

1. A particle moves with constant acceleration A in the x-direction along the line $y = h$ having started from rest at $x = 0$. Write down the position, velocity, and acceleration of the particle in polar coordinates.

2. A hiker kicks a rock horizontally off the edge of a cliff, and it falls into a body of water below. If the hiker hears the sound of the splash T seconds after having kicked the rock, and the height of the cliff above the water is h, what was the initial speed of the rock after the hiker kicked it? Assume the speed of sound is v.

3. A boy stands at the top of a hill which slopes downward uniformly at an angle ϕ below the horizontal. At what angle θ above the horizontal should the boy throw a tennis ball so that it has the greatest range?

4. Determine the force F that must be applied to the large block with mass m_1 shown in the picture below in order to prevent the block with mass m_3 from moving up or down. All surfaces are frictionless and the pulley has negligible mass.

5. A block of mass m rests on a wedge inclined at an angle θ. The coefficient of static friction between the block and the wedge is μ_s. The wedge is given a horizontal acceleration a as shown in the figure below. Assuming that $\tan \theta > \mu_s$, determine the possible values of a for which the block remains on the wedge without sliding up or down.
6. A large vat of sand steadily drains through a nozzle at its base. The stream of sand falls to the ground below and steadily accumulates in a cone shaped pile. If the coefficient of static friction between sand grains is μ_s, how tall is the pile after a volume of sand V has drained from the vat?

7. A bucket of water is suspended from a rope and rotated with angular velocity ω around its central axis which points along the direction of the rope. Determine the height of the water level inside the bucket as a function of the distance from the center of the bucket.

8. A circular ring of radius R is suspended perfectly horizontally above the ground. A bead of mass m is constrained to move around the ring and does so with an initial speed v_0 and begins at an initial angle θ_0. The coefficient of kinetic friction between the bead and the ring is μ_k. Determine the position of the bead as a function of time.

9. A particle of mass m moving in a straight line with an initial speed $v_0 > 0$ is slowed by a resistive force whose magnitude is given by $F = bv^\alpha$, where v is the speed of the particle. Determine the time required for the particle to come to rest.

10. A block of mass m is placed on a ramp inclined at an angle θ. Starting from rest, the block begins to slide down the ramp under the influence of gravity. As the block slides, it experiences a resistive force given by $F = mkv^2$, where k is a positive constant, and v is the block’s speed. Determine the amount of time required for the block to slide down a distance d.

11. A particle confined within the x-y plane moves along a trajectory with $r = a\theta$, where a is a constant. The particle moves in such a way that the radial acceleration is always zero. If the particle starts with $\theta_0 = 0$ and an initial angular velocity ω_0, determine the amount of time before the angle reaches θ. Express your answer in terms of the Error function, $\text{erf}(x)$, defined by:

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$