Electrostatics

1. Three charges are are lined up on the x-axis and fixed in place. The first charge $q_1 = 3q$ is located at $x = -d$, the second charge $q_2 = 2q$ is located at $x = 0$, and the third charge $q_3 = q$ is located at $x = d$. Determine the magnitude of the force on a fourth charge Q, also on the x-axis, that is located at $x = 2d$. Assume both q and Q are positive.

2. The same setup as the previous problem, but this time the fourth charge Q is not located on the x-axis, but is instead located at the point $x = 0$, $y = d$. Determine the magnitude of the force on Q in this case.

3. Two positive charges q_1 and q_2 lie on the x-axis and are separated by a distance d. Determine the point on the x-axis where the electric field is zero.

4. Four identical charges q are located at the corners of a rectangle with length L and height h. Determine the electrostatic force on the bottom right charge from the other three charges.

5. A thin rod of length ℓ and total charge Q has a linear charge density that is directly proportional to the distance from its left end. If the rod is lined up along the x-axis, determine the electric field on the x-axis, a distance d from its right end.

6. A thin, uniformly charged rod with length ℓ and total charge Q lies along the x-axis with its center at the origin. What is the electric field a height h above the center of the rod, i.e. at the point $x = 0$, $y = h$?