The Wavefunction

1. The wavefunction for a particle at some point in time is given by

\[\psi(x) = \sqrt{\frac{a}{\pi(x^2 + b^2)}}, \]

where \(a \) and \(b \) are positive, real constants. If the position of the particle is measured at this point in time, what is the probability that it will be found in the range \(-b < x < b\)?

2. At time \(t = 0 \) a particle is represented by the wavefunction

\[\Psi(x, 0) = \begin{cases}
A \left(\frac{x}{a} \right), & 0 \leq x \leq a \\
A \left(\frac{b-x}{b-a} \right), & a < x \leq b \\
0, & \text{elsewhere}
\end{cases} \]

a) Normalize and sketch the wavefunction \(\Psi(x, 0) \).

b) Where is the particle most likely to be found at \(t = 0 \)?

c) What is the probability of finding the particle to the right of point \(a \)?

d) Determine the expectation values of \(x \) and \(x^2 \).

3. At time \(t = 0 \) the wavefunction for a particle that is confined to the region \(0 \leq x \leq \frac{2\pi}{a} \) is given by

\[\Psi(x, 0) = Ax \left(x - \frac{\pi}{a} \right) \sin(ax), \]

where \(A \) and \(a \) are real constants.

a) What are the units of \(A \) and \(a \)?

b) Normalize and sketch the wavefunction \(\Psi(x, 0) \). How many nodes does the wavefunction have?

c) Calculate \(\langle x \rangle \), \(\langle x^2 \rangle \), and \(\sigma_x \) at \(t = 0 \).

d) What is the probability of finding the particle between the first two nodes?
4. Normalize the following wavefunction and calculate $⟨x⟩$, $⟨x^2⟩$, and $σ_x$

\[\Psi(x,t) = A e^{-\lambda|x|-i\omega t}. \]

5. At time $t = 0$ a particle is represented by the wavefunction

\[\Psi(x,0) = \begin{cases}
A(a^2 - x^2), & -a \leq x \leq a \\
0, & \text{elsewhere.}
\end{cases} \]

a) Normalize and sketch the wavefunction $Ψ(x,0)$.
b) Calculate $⟨x⟩$ and $⟨x^2⟩$ at $t = 0$.
c) Calculate $⟨p⟩$ and $⟨p^2⟩$ at $t = 0$.
d) Determine the uncertainties in x and p (i.e. calculate $σ_x$ and $σ_p$).
e) Is the result consistent with the uncertainty principle?

The Schrödinger Equation

6. Use the time-dependant Schrödinger equation to prove the following relationship:

\[\frac{d⟨p⟩}{dt} = \leftlangle -\frac{\partial V}{\partial x} \right⟩. \]

What is the significance of this result?

Probability

7. A needle of length $ℓ$ is dropped at random on a floor uniformly tiled by rectangles whose sides have length a and width b. Determine the probability that the needle will land entirely within one of the rectangles so that it does not overlap the boundaries of any tile. You may assume that $ℓ < a, b$.