Quantum Mechanics II
Midterm Exam #2

1. Two noninteracting, spinless particles, each with mass m, are placed in an infinite square well. Write down the wavefunctions and corresponding energies for the three lowest energy states for the following scenarios:

 a) The particles are distinguishable.

 a) The particles are identical bosons.

\[
\begin{align*}
\psi_{11} &= \frac{2}{a} \sin\left(\frac{\pi}{a} x_1\right) \sin\left(\frac{\pi}{a} x_2\right) \quad E_{11} = \frac{\pi^2 \hbar^2}{2ma^2} \\
\psi_{12} &= \frac{2}{a} \sin\left(\frac{\pi}{a} x_1\right) \sin\left(\frac{2\pi}{a} x_2\right) \quad E_{12} = \frac{3\pi^2 \hbar^2}{2ma^2} \\
\psi_{21} &= \frac{2}{a} \sin\left(\frac{2\pi}{a} x_1\right) \sin\left(\frac{\pi}{a} x_2\right) \quad E_{21} = \frac{\pi^2 \hbar^2}{2ma^2} \\
\psi_{11} &= \frac{2}{a} \sin\left(\frac{\pi}{a} x_1\right) \sin\left(\frac{\pi}{a} x_2\right) \quad E_{11} = \frac{\pi^2 \hbar^2}{2ma^2} \\
\psi_{12} &= \frac{\sqrt{2}}{a} \left[\sin\left(\frac{\pi}{a} x_1\right) \sin\left(\frac{2\pi}{a} x_2\right) + \sin\left(\frac{2\pi}{a} x_1\right) \sin\left(\frac{\pi}{a} x_2\right)\right] \quad E_{12} = \frac{3\pi^2 \hbar^2}{2ma^2} \\
\psi_{22} &= \frac{2}{a} \sin\left(\frac{2\pi}{a} x_1\right) \sin\left(\frac{2\pi}{a} x_2\right) \quad E_{22} = \frac{4\pi^2 \hbar^2}{ma^2}
\end{align*}
\]
2. A system is composed of two distinguishable spin 3/2 particles.

a) What are the possible values of the z-component of each of the two particles, and what are the possible values of the total spin of the system?

b) If the system is in a configuration in which the total spin is 3 and the z-component of the total spin is 2, then what are the possible values and corresponding probabilities that one could measure for the z-component of the spin of one of the individual particles?

Possibly useful: \(J_\pm |j, m\rangle = \hbar \sqrt{(j \mp m)(j \pm m + 1)} |j, m \pm 1\rangle \).

\begin{align*}
a) & \quad \text{Possible } S_{\text{total}}: 3, 2, 1, 0 \quad \text{Possible } M: \frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2} \\
\Rightarrow & \quad |3, 3\rangle = |\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}\rangle \\
\Rightarrow & \quad \frac{1}{\sqrt{6}} |3, 3\rangle = \frac{1}{\sqrt{3}} |\frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}\rangle + \frac{1}{\sqrt{3}} |\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}\rangle \\
\Rightarrow & \quad |3, 2\rangle = \frac{1}{\sqrt{2}} |\frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}\rangle + \frac{1}{\sqrt{2}} |\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}\rangle \\
\text{Hence} & \quad 50\% \ \text{particle A has } M = \frac{1}{2} \ \& \ \text{particle B has } M = \frac{3}{2} \\
& \quad 50\% \ \text{particle A has } M = \frac{3}{2} \ \& \ \text{particle B has } M = \frac{1}{2} \\
\end{align*}
3. A particle is trapped in an infinite potential well of width a that has a triangular bottom. The triangle is symmetric and centered at the middle of the well as shown in the figure below. The height of the triangular base is V_0. Use perturbation theory to calculate the ground state energy to first order.

Possibly useful: $\sin^2 \theta = \frac{1}{2} (1 - \cos 2\theta)$

$$E_o = \langle E_0 | \Delta H | E_o \rangle = 2 \int_0^{a/2} \gamma_o^* \Delta H \gamma_o \, dx = 2 \left(\frac{2}{a} \right) \left(\frac{2V_0}{a} \right) \int_0^{a/2} x \sin^2 \left(\frac{\pi x}{a} \right) \, dx$$

$$= \frac{8V_0}{a^2} \int_0^{a/2} x \sin \left(\frac{\pi x}{a} \right) \, dx = \frac{4V_0}{a^2} \int_0^{a/2} \left[1 - \cos \left(\frac{2\pi x}{a} \right) \right] \, dx$$

$$= \frac{4V_0}{a^2} \int_0^{a/2} x \, dx - \frac{4V_0}{a^2} \int_0^{a/2} \cos \left(\frac{2\pi x}{a} \right) \, dx = \frac{V_o}{2} - \frac{4V_0}{a^2} \left[\frac{-a}{2\pi} \int_0^{a/2} \sin \left(\frac{2\pi x}{a} \right) \, dx + O \right]$$

$$= \frac{V_o}{2} + \frac{2V_0}{a^2} \int_0^{a/2} \sin \left(\frac{2\pi x}{a} \right) \, dx = 2V_0 \left(\frac{1}{4} + \frac{1}{\pi^2} \right) = E_o^1$$

$$E_o = \frac{\pi^2 \hbar^2}{2M a^2} \Rightarrow E_o \approx E_o^0 + E_o^1$$

Hence, $E_o \approx \frac{\pi^2 \hbar^2}{2M a^2} + 2V_0 \left(\frac{1}{4} + \frac{1}{\pi^2} \right)$
4. Write down the fundamental rules of quantum mechanics that we have discussed in class.

You’re damn right I’m asking this again!

<< See notes... I hope everyone knows these by now! >>